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Triviality of Hierarchical Models with Small Negative
φ4 Coupling in Four Dimensions
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The Kadanoff-Wilson renormalization group (RG) for a class of hierarchical spin
models including small negative φ4 terms in four dimensions are studied by using
Gawȩdzki and Kupiainen’s analysis. We prove triviality for the class, namely prove
existence of critical trajectory that leads to the Gaussian fixed point.
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1. INTRODUCTION

Hierarchical spin model is an equilibrium statistical mechanical system introduced
by Bleher and Sinai(1,2) as a model suitable for tracing block spin renormalization
group (RG) trajectories. For the model, the RG transformation is reduced to
the following nonlinear transformation R of a function (single spin potential)
v = v(φ):

exp[−Rv(φ)] =
∫

exp
[ − 1

2 Ld
[
v
(
L−(d−2)/2φ + z

) + v
(
L−(d−2)/2φ − z

)]]
dν(z)∫

exp[−L4v(z)]dν(z)

(1)

where dν(z) = 1
(2π)1/2 exp(− 1

2 z2)dz, and L ≥ 10 is an even integer valued con-
stant. It is easy to see that the trivial function v(φ) ≡ 0 is a fixed point of R,
which we call the Gaussian fixed point. If, for a class of single spin potentials,
RG trajectories with initial potentials in the class, converge to the Gaussian fixed

1 Division of Information and Media Science, Graduate School of Science and Technology, Kobe
University, Rokko Kobe 657-8501, Japan; e-mail: hosaka@math.sci.kobe-u.ac.jp

237

0022-4715/06/0100-0237/0 C© 2006 Springer Science+Business Media, Inc.



238 Hosaka

point, then we say that the class of functions is trivial. Gawȩdzki and Kupiainen
studied this recursion in detail, and proved (among other things) the triviality for
φ4 models with some small φ4 coupling constant in 4 dimensions(3−5). See ref. 5
for a review of their results together with the relation of (1) and the hierarchical
spin model.

The purpose of the present paper is to extend the results of Gawȩdzki and
Kupiainen and prove triviality for a wider class of potentials. To be specific, we
consider the following class of single spin potentials:

v(φ) = µφ2 +
(

λ − 15ρ

1 − L−2

)
φ4 + ρφ6, φ ∈ R. (2)

Before stating our results, let us briefly review the relative known results.
The triviality of the hierarchical model with (2) in 3 dimensions has already been
established for small parameters by Müller and Schiemann(8). A common belief
based on power counting type of arguments suggest that the results of ref. 8 would
support triviality also for higher dimensions. However, one should note that the
role of φ4 term for d = 3 is different from that for d = 4. It is because φ4 is relevant
for d < 4 while it is not relevant for d ≥ 4. The statement in ref. 8 says that for
sufficiently small ρ we can find µ and λ such that the RG trajectory converges
to the Gaussian fixed point. On the other hand, a triviality statement for d = 4 is
that for arbitrary (but small) ρ and λ we can find µ such that the same conclusion
holds. In the latter case, we have to prove that an arbitrary (small) choices of λ

and ρ, in particular, with negative φ4 term, do not distort the standard expectation
of the behavior of an RG trajectory. T. Hara, T. Hattori, and H. Watanabe proved
the triviality of Dyson’s hierarchical Ising model in 4 dimensions. (7) They used
characteristic function of single spin distributions and Newman’s inequalities on
truncated correlations. Their method is useful to analyze in the strong coupling
regime. We expect that their method is valid for analyzing general class of initial
single spin potentials. However, (2) is still out of the range of their method, because
these initial single spin potentials do not satisfy the Lee-Yang property when the
coefficient of φ4 term is negative(9), so truncated correlations of these potentials do
not satisfy Newman’s inequalities that are the key estimation which their method
needs(7,10). Gawȩdzki and Kupiainen succeeded the construction of the non-trivial
Euclidean φ4

4 theory with the complex coupling constant with negative real part(6).
However, the parameter region of the coupling constants which we studied is not
included in their studied region.

Let us turn to our proof of triviality for (1) with potentials of the form
(2). We will show that the parameters will enter the region where the Theo-
rem of Gawȩdzki and Kupiainen(5) can be applied (we call this region “G-K
region”), after some iterations (finite time iterations) of the RG by the same tech-
niques of Gawȩdzki and Kupiainen(5). The point of our proof is to change the
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induction hypothesis after some iterations to reflect the dominant terms in the
potential.
Now, we state the results precisely. We will use the following notation:

vn(φ) = Rnv0(φ), (3)

(vn)k(φ) = 1

k!

dk(vn)(0)

dφk
φk, (4)

(vn)≥k(φ) = vn(φ) −
∑
l<k

(vn)l(φ). (5)

Let us be given an initial single spin potential

v0(φ) =
(

µ0 − 1

2
c2(v0)

)
φ2 +

(
λ0 − 1

2
c4(v0)

)
φ4 + ρ0φ

6 + (v0)≥8(φ), (6)

where

c2(v0) = 12λ0

1 − L−2
− 180ρ0

(1 − L−2)(1 − L−4)
+ 90ρ0

1 − L−4
, (7)

c4(v0) = 30ρ0

1 − L−2
, (8)

are the counter terms originating from Wick ordering. Let us define a class of initial
single spin potentials V0(L , D, C1, n0, ρ0) satisfying the following conditions for
constants L , D, C1, n0, and ρ0.

Ta for |Imφ| < C1((L−4ρ−1
0 )1/6 ∧ n1/4

0 ), exp[−v0(φ)] is analytic, positive for
real φ even, and∣∣e−(v0)(φ)

∣∣ ≤ exp
[
D − (

λ
1/2
0 + ρ

1/3
0

)|φ|2 + A1λ0(Imφ)4 + A2ρ0(Imφ)6
]
, (9)

where A1(≥ 20) and A2(≥ 2004) are universal constants.
Tb for |φ| < C1((L−4ρ−1

0 )1/6 ∧ n1/4
0 ), (v0)≥4(φ) is analytic,

(v0)≥4(φ) =
(

λ0 − 15ρ0

1 − L−2

)
φ4 + ρ0φ

6 + (v0)≥8(φ), (10)

with

C−−L−4

n0
≤ λ0 ≤ C++L−4

n0
, C−− = 1

42
, C++ = 1

28
, (11)

|(v0)≥8(φ)| ≤ ρ
2/3
0 n1/8

0 ∨ n−3/4
0 . (12)
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Notice that the coefficient of φ4 is represented as λ0 − 15ρ0

1−L−2 . If we take a
value of ρ0 suitably large, then the coefficient of φ4 will be negative. So, the class
V0(L , D, C1, n0, ρ0) includes small negative φ4 case. This case is the main object
of our study in this paper. Of course, this class includes potentials which Gawȩdzki
and Kupiainen studied. In fact it is easy to see that V0(L , D, C1, n0, 0) is a class
which are investigated in.(5) We will prove the following for our class.

Theorem 1.1. There exist positive constants:

D, C̄1(L , D) ≥ L , n̄0(L , D, C1) ≥ L48,

such that the following holds.
Let C1 ≥ C̄1(L , D), n0 ≥ n̄0(L , D, C1), and

0 ≤ ρ0 ≤ L−4n−1
0 . (13)

Define the RG as (1). Then there exists µcri t ∈ R such that the iterates vn

of the recursion converge to zero uniformly on compacts in C1, if we start from
v0 ∈ V0(L , D, C1, n0, ρ0) with µ0 = µcri t .

The proof goes along the following line. In the beginning, we are in the region
where (vn)≥6(φ) is dominant. For properly chosen initial data, (vn)≥6(φ) decreases
rapidly, and we then go into the region where φ4 term of vn(φ) is comparable to
(vn)≥6(φ). As the recursion proceeds, the φ4 term becomes positive and dominant,
after which it eventually decreases, and vn(φ) finally enters the G–K region. To
trace the trajectory, we will divide up the induction into 2 parts along the trajectory
and impose different induction hypothesis for the ρ dominant regime and the λ

dominant regime. (Compare the induction hypotheses L1.2a and L1.2b with L1.3a
and L1.3b, respectively.)

We will prove this by means of two lemmas. First, for n ≥ 0, let
V1

n (L , D, C1, n0, ρ0) be the class of potentials vn satisfying:

L1.2a for |Imφ| < C1(L2n−4ρ−1
0 )1/6, exp[−vn(φ)] is analytic, positive for real

φ, even, and∣∣e−vn (φ)
∣∣ ≤ exp

[
D − (

λ1/2
n + ρ1/3

n

)|φ|2 + A1λn(Imφ)4 + A2ρn(Imφ)6],(14)

L1.2b for |φ| < C1(L2n−4ρ−1
0 )1/6, (vn)≥4(φ) is analytic, and

(vn)≥4(φ) =
(

λn − 1

2
c4(vn)

)
φ4 + ρnφ

6 + (vn)≥8(φ) (15)

with

|λn − λ0| ≤ nn−7/4
0 , (16)

|ρn − L−2nρ0| ≤ nL−2nn−7/4
0 , (17)
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|(vn) ≥ 8(φ)| ≤ (ρ2/3
0 n1/8

0 ∨ n−3/4
0 )L−n. (18)

Lemma 1.2. There exist constants D, C̄1(L , D) ≥ L, n̄0(L , D, C1) ≥ L48 such
that the following holds. Let C1 ≥ C̄1(L , D), n0 ≥ n̄0(L , D, C1) and n ≥ 0 satisfy
the inequality

(n0 + n)1/4 ≥ (
L2n−4ρ−1

0

)1/6
. (19)

Suppose also that v0(φ) ∈ V0(L , D, C1, n0, ρ0) with

L−4n−3/2
0 ≤ ρ0 ≤ L−4n−1

0 , (20)

and vn(φ) ∈ V1
n (L , D, C1, n0, ρ0).

Then, there exists a closed interval Jn ⊂ In = [−(n0 + n)−3/2, (n0 + n)−3/2]
such that for µn running through Jn, vn+1 ∈ V1

n+1(L , D, C1, n0, ρ0). Further, the
map µn 	→ µn+1 sweeps In+1 continuously.

Iterating Lemma 1.2, each time we can choose a subinterval Jn+1 ⊂ Jn ⊂ I0

of the initial mass squared values such that µn sweeps In+1. The effect of relatively
large coefficient of φ6 provides us with a positive coefficient of φ4 in the next step,
and we can get rid of negative φ4 term. However, we can not iterate Lemma 1.2 for
arbitrary times because of assumption (19). In other words, (vn)≥6(φ) will not be
dominant any more compared with φ4 term after some iterations. After applying
Lemma 1.2 as much as possible, we are still not in the G-K region, and we have
to trace the trajectory carefully for some more steps. So, we must prepare new
assumptions. Put

n1 = max{n ∈ N
∣∣(L2n−4ρ−1

0

)1/6 ≤ (n0 + n)1/4} + 1. (21)

Notice that this number is the first n for which Lemma 1.2 can not be applied.
Obviously, we have n1 ≤ 1

4 logL n0.
Let us define a class of single spin potentials V2

n1+n(L , D, C1, n0, ρ0) satis-
fying:

L1.3a for |Imφ| < C1(n0 + n1 + n)1/4, exp[−vn1+n] is analytic and positive for
real φ, even, and∣∣e−vn1+n (φ)

∣∣ ≤ exp[D − (
λ

1/2
n1+n + ρ

1/3
n1+n

)∣∣φ|2 + A1λn1+n(Imφ)4]

× exp[A2ρn1+n(Imφ)6], (22)

L1.3b for |φ| < C1(n0 + n1 + n)1/4, (vn1+n)≥4(φ) is analytic,

(vn1+n)≥4(φ)

= (
λn1+n − 1

2
c4(vn1+n)

)
φ4 + ρn1+nφ

6 + (vn1+n)≥8(φ), (23)
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with

|λn1+n − λ0| ≤ (n1 + n)n−7/4
0 , (24)

|ρn1+n − L−2(n1+n)ρ0| ≤ (n1 + n)L−2(n1+n−1)n−7/4
0 , (25)

|(vn1+n)≥8(φ)| ≤ L−3n−n1

(
ρ

2/3
0 n1/8

0 ∨ n−3/4
0

)
. (26)

Note thatV1
n1

(L , D, C1, n0, ρ0) ⊂ V2
n1

(L , D, C1, n0, ρ0), if L , D, C1, n0, and
ρ0 are same constants.

Lemma 1.3. There exist constants D, C̄1(L , D) ≥ L, n̄0(L , D, C1) ≥ L48 such
that the following holds.

Let C1 ≥ C̄1(L , D), n0 ≥ n̄0(L , D, C1), logL n0 ≥ n ≥ 0.
v0(φ) ∈ V0(L , D, C1, n0, ρ0), and vn1+n(φ) ∈ V2

n1+n(L , D, C1, n0, ρ0).
Then, there exists a closed interval Jn1+n ⊂ In1+n = [(n0 + n1 +

n)−3/2, (n0 + n1 + n)−3/2] such that for µn1+n running through Jn1+n, vn1+n+1 ∈
V2

n1+n+1. Further, the map µn1+n 	→ µn1+n+1 sweeps In1+n+1 continuously.

The proof of Lemma 1.3 is close to the proof of Lemma 1.2. A different
point from Lemma 1.2 is the difference in the condition of the region where
vn1+n(φ) satisfies analyticity. In fact we require that exp[−vn1+n(φ)] is analytic
for |Imφ| < C1(n0 + n1 + n)1/4 in Lemma 1.3. The reason why that there is such
a difference because φ4 term becomes dominant compared with (vn1+n)≥6(φ). If
we notice that the conditions of Lemma 1.3 are different from the conditions of
Lemma 1.2, we can prove Lemma 1.3 in a similar way as Lemma 1.2. So, we omit
the proof of Lemma 1.3 from this paper.

With Lemma 1.3 we can continue iterations, and we can make sure that after
a finite number of iterations, this potential is in the G-K region. More precisely,
Gawȩdzki and Kupiainen introduced a class of potentials VG−K

n (L , D, C1, n0),
which is defined to satisfy:

G-Ka e−(vn )≥4(φ) is analytic in |Imφ| < C1(n0 + n)1/4, positive for real φ, even
and

| exp[−(vn)≥4(φ)]| ≤ exp[D − λ1/2
n |φ|2 + A1λn(Imφ)4], (27)

G-Kb for |φ| < C1(n0 + n)1/4, (vn)≥4(φ) is analytic,

(vn)≥4(φ) = λnφ
4 + (vn)≥6(φ) (28)

with

C−L−4

n0 + n
≤ λn ≤ C+L−4

n0 + n
, C− = 1

48
, C+ = 1

24
, (29)
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|(vn)≥6(φ)| ≤ (n0 + n)−3/4 (30)

In this class VG−K
n (L , D, C1, n0), Gawȩdzki and Kupiainen proved the

following,

Theorem1.4.(Gawȩdzki and Kupiainen) There exist constants D, C̄1(L , D), n̄0

(L , D, C1) such that the following holds. Let C1 ≥ C̄1(L , D), n0 ≥ n̄0(L , D, C1)
and n ≥ 0.

Put

vn(φ) = µn − 6λn

1 − L−2
φ2 + (vn)≥4(φ) (31)

where (vn)≥4(φ) ∈ VG−K
n (L , D, C1, n0). Then, there exists a closed interval

Jn ⊂ In such that for µn running through Jn , (vn+1)≥4(φ) = vn+1(φ) − µn+1φ
2 +

6λn+1

1−L−2 φ
2 ∈ VG−K

n+1 (L , D, C1, n0). Further, the map µn 	→ µn+1 sweeps In+1 con-
tinuously.

Finally, let us explain differences between the work of Gawȩdzki and
Kupiainen(5) and this paper. First of all, we study contribution of the term of
φ6 to the term of φ4 rigorously to control the term of φ4 even with negative co-
efficient. Secondly, our class of single spin potentials permits us to take v≥6(φ) in
wider class than that Gawȩdzki and Kupiainen studied.

2. PROOF OF LEMMA 1.2

We will prove that v′
n(φ) = vn+1(φ) is inV1

n+1(L , D, C1, n0, ρ0), if µn is in In .
We prove this lemma according to Gawȩdzki and Kupiainen.(5) The proof involves
the small field region analysis, and the large field region analysis corresponding
to the cases either |φ| < C1(L2(n+1)−4ρ−1

0 )1/6, or |Imφ| < C1(L2(n+1)−4ρ−1
0 )1/6

respectively.
In the small field, we prove that v′

n(φ) satisfies L1.2b′, the condition L1.2b
with n being replaced by n + 1, by using the Taylor expansion, and some estimation
of the Gaussian integrals as in(5).

As for the large field region, we only investigate global behavior of v′
n(φ),

i.e., we confirm that v′
n(φ) satisfies (18) of L1.2a′, the condition L1.2a with n

being replaced by n + 1.
We use K for calculable absolute constants, whose values will vary in each

occurrence.

2.1. Small Field Region Analysis

Let vn ∈ V1
n . Write χ1(z) = χ (|z| < (L2n−4ρ−1

0 )1/6) and throughout this sub-
section, we assume that φ is in the region |φ| < 10

11 LC1(L2n−4ρ−1
0 )1/6.
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Note that we have to put C1 to satisfy the inequality |L−1φ ± z| <

C1(L2n−4ρ−1
0 )1/6 for |z| < (L2n−4ρ−1

0 )1/6 and |φ| < 10
11 LC1(L2n−4ρ−1

0 )1/6.
Next, decompose vn+1(φ) as follows,

vn+1(φ) = v′
n(φ) =

∼
v′

n (φ)+
≈
v′

n (φ), (32)

e−
∼
v′

n (φ) =
∫

exp

[
− L4

2

∑
±

vn(L−1φ ± z)

]
dν1(z)/(φ = 0)small, (33)

where

(φ = 0)small =
∫

exp[−L4vn(z)]dν1(z), (34)

dν1(z) ≡ χ1(z)e−z2/2 dz√
2π

. (35)

First of all, we estimate
∼
v′

n (φ) in 2.1.1, and then complete the analysis in the
small field region by looking into the Taylor coefficients in 2.1.2

2.1.1. Estimation of
∼
v′

n (φ)

Let us take a logarithm of (33).

∼
v′

n (φ) = L2

(
µn − 1

2
c2(vn)

)
φ2 +

(
λn − 1

2
c4(vn)

)
φ4 + L−2ρnφ

6

− log
∫

e−wφ (z)dν1(z) + log(φ = 0)small. (36)

wφ(z) = w0(z) + w2(z)φ2 + w4(z)φ4 + w6(z)φ6 + w≥8(φ, z), (37)

and

w0(z) = L4vn(z)

= L4

{(
µn − 1

2
c2(vn)

)
z2 +

(
λn − 1

2
c4(vn)

)
z4 + ρnz6 + (vn)≥8(z)

}
,

w2(z) = L2

(
6

(
λn − 1

2
c4(vn)

)
z2 + 15ρnz4 + d2

2dz2
(vn)≥8(z)

)
, (38)

w4(z) = 15ρnz2 + 1

4!

d4

dz4
(vn)≥8(z), (39)
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w6(z) = L−2 d6

6!dz6
(vn)≥8(z), (40)

w≥8(φ, z) = L−4φ8

7!

{∫ 1

0
dt(1 − t)7 d8

dz8
(vn)≥8(L−1tφ + z)

+
∫ 1

0
dt(1 − t)7 d8

dz8
(vn)≥8(L−1tφ − z)

}
. (41)

From the conditions L1.2a–L1.2b, vn(φ) is even and analytic.
We can estimate d8

dz8 (vn)≥8(φ) on the support of dν1(z) as follows by using
the Cauchy formula and (18),

|(vn)≥8(z)| ≤ 1

7!

∫ 1

0
dt(1 − t)7|z8 d8

dz8
(vn)≥8(t z)|

≤ C1

8!(C1 − 1)9

(
ρ

2/3
0 n1/8

0 ∨ n−3/4
0

)
(L4ρ0)4/3L−11n/3z8. (42)

d2

dz2 (vn)≥8(z) to d6

dz6 (vn)≥8(z) can be estimated as (42).
From the perturbation expansion:

− log
∫

e−wφ (z)dν1(z)

= − log
∫

dν1(z) + 〈wφ(z)〉0 −
∫ 1

0
dt(1 − t)〈wφ(z); wφ(z)〉t , (43)

where

〈· · ·〉t ≡
∫

· · · e−twφ (z)dν1(z)/
∫

e−twφ (z)dν1(z). (44)

Now, we shall estimate each part of (43). Using the estimation of the Gaussian
integrations, we get

〈wφ(z)〉0 = L4〈vn(z)〉0 + 6L2

(
λn − 1

2
c4(vn)

)
φ2 + 45L2ρnφ

2

+ ∼
R

0,0

2 (L , n0, ρ0, n)φ2 + 15ρnφ
4+ ∼

R
0,0

4 (L , n0, ρ0, n)φ4

+ ∼
R

0,0

6 (L , n0, ρ0, n)φ6 + 〈w≥8(φ, z)〉0, (45)

where, the terms
∼
R

0,0

2i (L , n0, ρ0, n), i = 1, . . . , 3 satisfy

∣∣ ∼
R

0,0

2i (L , n0, ρ0, n)
∣∣ ≤ (

ρ
2/3
0 n1/8

0 ∨ n−3/4
0

)
(L4ρ0)4/3L−11n/3. (46)



246 Hosaka

Therefore from (45), we can estimate 〈w≥8(φ, z)〉0 as follows,

|〈w≥8(φ, z)〉0| ≤ L4−n(1 + (L4ρ0)1/3L−2n/3)
(
ρ

2/3
0 n1/8

0 ∨ n−3/4
0

)
. (47)

Next we estimate∫ 1

0
dt(1 − t)〈wφ(z); wφ(z)〉t =

∫ 1

0
dt(1 − t)

∑
i, j

〈w̃2i ; w̃2 j 〉t

=
∫ 1

0
dt(1 − t)〈w0(z); w0(z)〉t +

∫ 1

0
dt(1 − t)

∑
i, j �=0

〈w̃2i ; w̃2 j 〉t , (48)

where

w̃2i =
{

w2i (z)φ2i i = 0, 1, 2, 3

w≥8(φ, z) i = 4.

The cumulants are

〈w̃2i ; w̃2 j 〉t = 〈e−twφ (z)〉−1
0 〈w̃2i w̃2 j e

−twφ (z)〉0

−〈e−twφ (z)〉−2
0 〈w̃2i e

−twφ (z)〉0〈w̃2 j e
−twφ (z)〉0. (49)

Note that the support of dν1(z) is |z| < (L2n−4ρ−1
0 )1/6 and the coefficients

are as small as the inverse of the diameter of the small field region.
We get the uniform estimate |wφ(z)| ≤ K · C4

1 for |z| < (L2n−4ρ−1
0 )1/6 and

|φ| < 10LC1
11 (L2n−4ρ−1

0 )1/6. We have∣∣∣∣∣∣
∑

(i, j)�=(0,0)

〈w̃2i ; w̃2 j 〉t

∣∣∣∣∣∣ ≤ eK ·C4
1

∑
(i, j)�=(0,0)

(〈|w̃2i ||w̃2 j |〉0 + 〈|w̃2i |〉0〈|w̃2 j |〉0
)
. (50)

So, we can estimate | ∫ 1
0 dt(1 − t)

∑
(i, j)�=(0,0)〈w̃2i ; w̃2 j 〉t | similarly as in (42), we

obtain

|2nd term of RHS of (48)| ≤ K eK ·C4
1 L−2n−2

0 (|φ|2 + L−2|φ|4 + L−2n−4|φ|6)

+|higher order terms|. (51)

The higher order terms are estimated as follows,

|higher order terms| ≤ K eK ·C4
1 L12−nC12

1 n−1/8
0

(
ρ

2/3
0 n1/8

0 ∨ n−3/4
0

)
. (52)

Next, we estimate
∫ 1

0 dt(1 − t)〈w0(z); w0(z)〉t . From the Taylor expansion of
φ, and we can use the Cauchy formula because 〈w0(z); w0(z)〉t is analytic function
in |φ| < 10

11 LC1(L2n−4ρ−1
0 )1/6, we get

∣∣ ∫ 1

0
dt(1 − t)〈w0(z); w0(z)〉t −

∫ 1

0
dt(1 − t)〈w0(z); w0(z)〉t |φ=0|
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≤ K exp(K · C4
1 ) · L−2n−2

0 |φ|2. (53)

So we have,

∣∣ ∫ 1

0
dt(1 − t)〈wφ(z); wφ(z)〉t −

∫ 1

0
dt(1 − t)〈w0(z); w0(z)〉t |φ=0|

≤ K exp
(
K · C4

1

)
L−2n−2

0 (|φ|2 + L−2|φ|4 + L−2n−4|φ|6)

+|higher order terms|, (54)

|higher order terms| ≤ K eK ·C4
1 L12−nC12

1 n−1/8
0

(
ρ

2/3
0 n1/8

0 ∨ n−3/4
0

)
. (55)

These coefficients are large, but not terrible, because we can take n0 suffi-
ciently large. In the following, we put n1/8

0 ≥ K · C12
1 L12eK ·C4

1 .
From (36) and (43), we infer that

∼
v′

n (φ) = L2
(
µn − 1

2
c2(vn)

)
φ2 + 6L2

(
λn − 1

2
c4(vn)

)
φ2 + 45L2ρnφ

2

+
∼
R2 (L , n0, ρ0, n)φ2 + (λn − 1

2
c4(vn))φ4 + 15ρnφ

4+ ∼
R4 (L , n0, ρ0, n)φ4

+L−2ρnφ
6+ ∼

R6 (L , n0, ρ0, n)φ6+
∼

(vn)′≥8 (φ), (56)

where, the terms
∼
R2i (L , n0, ρ0, n), i = 1, 2, 3 satisfy

|R̃2i (L , n0, ρ0, n)| ≤ L−10−2i n−2+1/8
0 + ∣∣ ∼

R
0,0

2i (L , n0, ρ0, n)
∣∣, i = 1, 2, (57)∣∣R̃6(L , n0, ρ0, n)| ≤ L−2n−18n−2+1/8

0 + ∣∣R̃0,0
6 (L , n0, ρ0, n)|, (58)

and from (47) and (55),
∼

(vn)′≥8 (φ) satisfy

|
∼

(vn)′≥8 (φ)| ≤ L4−n(1 + L−2n/3(L4ρ0)1/3 + L−4)
(
ρ

2/3
0 n1/8

0 ∨ n−3/4
0

)
, (59)

for |φ| < 10
11 LC1(ρ−1

0 L2n)1/6. Notice that

(φ = 0)small = log
∫

dν1(z) − 〈w0(z)〉0 +
∫ 1

0
dt(1 − t)〈w0(z); w0(z)〉t |φ=0.

So we can check that the constant term (φ = 0)small vanishes. The estimate (59) is
a little weaker than what we want (see (18)). So, we need a stronger estimate. Since
∼
v′

n (φ) is analytic in |φ| < 10
11 LC1(L2n−4ρ−1

0 )1/6, φ−8
∼

(vn)′≥8 (φ) is also analytic
in |φ| < 10

11 LC1(L2n−4ρ−1
0 )1/6. We obtain from the maximum principle

| ˜(vn)′≥8(φ)| ≤
(

|φ|
(10L/11)C1(L2n−4ρ−1

0 )1/6

)8

(ρ2/3
0 n1/8

0 ∨ n−3/4
0 )
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×(L4−n(1 + L−2n/3(L4ρ0)1/3 + L−4)), (60)

so that for |φ| < C1(L2(n+1)−4ρ0)1/6,

∣∣ ∼
(vn)′≥8 (φ)| ≤

(
11

10

)8

L−16/3
(
L4−n(1 + L−2n/3(L4ρ0)1/3 + L−4)

×(
ρ

2/3
0 n1/8

0 ∨ n−3/4
0

))
. (61)

2.1.2. Estimation of
≈
v′

n (φ) for |φ| < 10
11 LC1(L2n−4ρ−1

0 )1/6

Represent (32) as

≈
v′

n (φ) = log

(
1 +

∫
exp

[ − 1
2 L4

∑
± vn(L−1φ ± z)

]
(1 − χ1(z))dν(z)

e−
∼
v′

n (φ)(φ = 0)small

)

+ log(φ = 0)small − log(φ = 0). (62)

We want to prove that
≈
v′

n (φ) is analytic in|φ| < 10
11 LC1(L2n−4ρ−1

0 )1/6 and

sufficiently smaller than
∼
v′

n (φ). To prove these properties, we have only to prove
that ∫

exp
[ − 1

2 L4
∑

± vn(L−1φ ± z)
]
(1 − χ1(z))dν(z)

e−
∼
v′

n (φ)(φ = 0)small

(63)

is analytic and sufficiently small in |φ| < 10
11 LC1(L2n−4ρ−1

0 )1/6.
First of all, we estimate the denominator of (63). We can show that the

denominator is bounded from below by a constant which depends on C1, but not
on n0. From L1.2b, and (57–58) together with uniform estimate of w0(z) under the
condition that (n0 + n)1/4 ≥ (L2n−4ρ−1

0 )1/6, we estimate denominator as follows,

|denominator of (63)| ≥ exp
[ − K · C6

1

]
. (64)

Next, we estimate the numerator part of (63),

|numerator of (63)| ≤
∫

(1 − χ1(z))
∏
±

| exp[−vn(L−1φ ± z)]|L4/2dν(z). (65)

Using (14) of L1.2a for |L−1φ ± z| < C1(L2n−4ρ0)1/6, we have

|numerator of (63)| ≤ exp[K + L4 D + A1C4
1 + 2A2C6

1 − 1

4
(L2n−4ρ−1

0 )1/3].

(66)
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So,

|(63)| < exp

[
K · C6

1 + L4 D + A1C4
1 + 2A2C6

1 − 1

4

(
L2n−4ρ−1

0

)1/3
]

. (67)

For given L , D and C1, we can take n0 large enough to obtain

RHS of (67) ≤ exp

[
−1

8
(L2n−4ρ−1

0 )1/3

]
. (68)

This estimate is also valid for log(φ = 0) − log(φ = 0)small. According to (68),

we can show that
≈
v′

n (φ) is analytic and

|
≈
v′

n (φ)| ≤ 2e−1/8(L2n−4ρ−1
0 )1/3

. (69)

2.1.3. Estimation of coefficients

Now, we assume that |φ| < C1(L2(n+1)−4ρ−1
0 )1/6 i.e. φ is in the small

field region of v′
n(φ). Notice that the small field region is in the region |φ| <

10
11 LC1(L2n−4ρ−1

0 )1/6, so we can use the result in 2.1.2 Thus,
≈
v′

n (φ) is analytic

in the small field region, and we can obtain power series expansion of
≈
v′

n (φ).
With the use of Cauchy’s estimate, we see that coefficients of φ2, φ4 and φ6

satisfy, ∣∣∣∣ 1

k!

dk

dφk

≈
v′

n (0)

∣∣∣∣ ≤ e−1/8(L2n−4ρ−1
0 )1/3

, k = 2, 4, and 6. (70)

Using the bounded convergence theorem, we see that 1
2

d2

dφ2

≈
v′

n (0), 1
4!

d4

dφ4

≈
v′

n

(0), and 1
6!

d6

dφ6

≈
v′

n (0) are continuous functions of µn on In . From (61) and (69),
if n0 is sufficiently large, then we have

|(vn)′≥8(φ)| ≤ L−(n+1)
(
ρ

2/3
0 n1/8

0 ∨ n−3/4
0

)
, (71)

for |φ| < C1(L2(n+1)−4ρ0)1/6. From (56), (58), and (70), we know that

|ρ ′
n − L−2ρn| = |R6(L , n0, ρ0, n) + 1

6!

d6

dφ6

≈
v′

n (0)| ≤ L−2nn−15/8
0 . (72)

Thus, if n0 is sufficiently large, we have∣∣ρ ′
n − L−2(n+1)ρ0

∣∣ < (n + 1)L−2nn−7/4
0 (73)

which proves (18) of L1.2b′.



250 Hosaka

From (56), (57), we know

|λ′
n − λn

∣∣∣ = |R4(L , n0, ρ0, n) + d4

4!dφ4

≈
v′

n (0) + 15(ρ ′
n − L−2ρn)

1 − L−2

∣∣∣
≤ n−15/8

0 . (74)

Thus, we have

|λ′
n − λ0| < (n + 1)n−7/4

0 , (75)

which completes the proof of L1.2b′. Similarly, we get estimation of coefficient
µ′

n as follows,

|µ′
n − L2µn| ≤

∣∣∣(6(λn − λ′
n)

1 − L−2
− 90(L−2ρn − ρ ′

n)

(1 − L−2)(1 − L−4)
+ 45(L−2ρn − ρ ′

n)

1 − L−4

)∣∣∣
+|R2(L , n0, ρ0, n) + 1

2

d2

dφ2

≈
v′

n (0)| ≤ K × n−15/8
0 . (76)

We know that map R : µ 	→ µ′ is continuous, and image R(In) include
In+1. So that we can take for Jn+1 a connected component of this inverse image
R−1(In+1) ⊂ In .

This ends the analysis of the small field properties.

2.2. Large Field Region Analysis

Next, we prove that e−(vn )′(φ) satisfy the condition L1.2a′. First, we prove
it in the case where |Reφ| > C1(L2(n+1)−4ρ−1

0 )1/6. Next, we prove it in |φ| <
10
11 LC1(L2n−4ρ−1

0 )1/6 i.e. this region includes the small field region of v′(φ).

2.2.1. The Case Where |Reφ| > C1(L2(n+1)−4ρ−1
0 )1/6

Note that the definition of the RG (1) has the following expression

e−v′
n (φ) =

∫ ∏
±

exp[−vn(L−1φ ± z)]L4/2dν(z)/(φ = 0). (77)

|Im(L−1φ ± z)| < C1(L2n−4ρ−1
0 )1/6, if |Imφ| < C1(L2n−2ρ−1

0 )1/6. From the con-
dition L1.2a,∣∣e−(vn )′(φ)

∣∣ ≤ exp
[
L4 D − L2

(
λ1/2

n + ρ1/3
n

)∣∣φ|2 + A1λn(Imφ)4
]

× exp[A2L−2ρn(Imφ)6]
∫ ∞

−∞
e−L4(λ1/2

n −ρ
1/3
n )z2

dν(z)/(φ = 0). (78)
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Note that, λn and ρn are positive and sufficiently small, hence, this integral part
and (φ = 0) estimated as absolute constants, so we get

RHS of (78) ≤ exp
[
L4 D − L2

(
λ1/2

n + ρ1/3
n

)|φ|2 + A1λn(Imφ)4
]

× exp[A2L−2ρn(Imφ)6 + K ]. (79)

If D and L are given, we take C1 sufficiently large and then we take n0 sufficiently
large. Thus, we obtain

|exp(−v′(φ))|
< exp[D − (

λ′
n

1/2 + ρ ′
n

1/3)|φ|2 + A1λ
′
n(Imφ)4 + A2ρ

′
n(Imφ)6], (80)

for |Imφ| < C1(L2(n+1)−4ρ−1
0 )1/6, |Reφ| > C1(L2(n+1)−4ρ−1

0 )1/6.

2.2.2. The Case Where |φ| < 10
11 LC1(L2n−4ρ0)1/6

Let (n0 + n)1/4 ≥ (L2n−4ρ−1
0 )1/6, µn ∈ In , and |φ| < 10

11 LC1(L2n−4ρ−1
0 )1/6. From

(59), (73), (75), and (76), we have∣∣e−(vn )′(φ)
∣∣ ≤ exp

[
K · L−2C2

1 n−1/2
0 ]

× exp
[ + K · C4

1 L4/3
(
L−2(n+1)ρ0

)1/3]
× exp

[ − λ′
n(Reφ4) − ρ ′

n(Reφ6) + L4n−1/2
0

]
. (81)

And, we estimate ρ ′
n(Reφ6) as follows,

ρ ′
n(Reφ6) ≥ ρ ′

n

(
1

4
(Reφ)6 − 2001(Imφ)6

)

≥ −1

2
D6 + 2(ρ ′

n)1/3|φ|2 − A2ρ
′
n(Imφ)6. (82)

Notice that D6 does not depend on C1, n0 or n. Similarly, we can estimate,
λ′

nReφ4 ≥ − 1
2 D4 + 2(λ′

n)1/2|φ|2 − A1λ
′
n(Imφ)4. Notice that D4 does not depend

on C1, n0 or n, either. Put D = D4 + D6. From (81) to (82),∣∣e−(vn )′(φ)
∣∣ ≤ exp[D − ((λ′

n)1/2 + (ρ ′
n)1/3)|φ|2 + A1λ

′
n(Imφ)4]

× exp

[
+A2ρ

′
n(Imφ)6 − 1

2
D + K · L−2C2

1 n−1/2
0

]

× exp
[
K · L4/3C4

1

(
L−2(n+1)ρ0

)1/3 + L4n−1/2
0

]
, (83)

which is smaller than

exp[D − ((λ′
n)1/2 + (ρ ′

n)1/3)|φ|2 + A1λ
′
n(Imφ)4 + A2ρ

′
n(Imφ)6], (84)
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if n0 is sufficiently large. Proof of Lemma 1.2 is completed.

3. PROOF OF THEOREM 1.1

Finally, we prove Theorem 1.1, using Lemma 1.2, Lemma 1.3 and Theorem
1. First of all, we notice that it is possible to take constants L , D, C1(L , D),
n0(L , D, C1) to satisfy Lemma 1.2, Lemma 1.3, and Theorem 1. We can check that
potential v(φ) can be iterated n1 times if initial parameters satisfy the conditions Ta
and Tb because of Lemma 1.2. Notice that vn1 (φ), the potential after n1 iterations,
satisfies the conditions L1.3a and L1.3b with n = 0, and so Lemma 1.3 can be
applied to this potential. We have to iterate R using Lemma 1.3, sufficiently many
times so that the iterated potentials satisfy the G-K conditions. Put

n2 = min{n ∈ N : |ρn1+n||φ|6 + |(vn1+n)≥8(φ)| < (n0 + n1 + n)−3/4

for |φ| < C1(n0 + n1 + n)1/4} + 1. (85)

Then,

ρn1+n2−1 < (n0 + n1 + n2 − 1)−9/4. (86)

By calculation, n2 can be estimated as n2 < logL n0. Since, ρn1+n2 ≥ 0, and by
(24)

λn1+n2 − 15ρn1+n2

1 − L−2
< λ0 + (n1 + n2)n−7/4

0

<
C++
L4

n−1
0 + 2(logL n0)n−7/4

0 <
C+
L4

(n0 + n1 + n2)−1.

(87)

Similarly, by (86) we have

λn1+n2 − 15ρn1+n2

1 − L−2
>

C−
L4

(n0 + n1 + n2)−1. (88)

So, we checked the condition G-Kb completely.
Next, let us check the condition G-Ka. Notice that analyticity, positivity for

real φ, and even function of vn1+n2 (φ) are checked easily. Now, We check the
bound of vn1+n2 (φ)

| exp[−vn1+n2 (φ)]| ≤ exp
[
D − (

λ
1/2
n1+n2

+ ρ
1/3
n1+n2

)|φ|2]
× exp[+A1λn1+n2 (Imφ)4 + A2ρn1+n2 (Imφ)6]. (89)

From the definitions of n1 and n2, −ρ
1/3
n1+n2

|φ|2 + A2ρn1+n2 (Imφ)6 is nonpositive
for (Imφ) < C1(n0 + n1 + n2)1/4, so we have

| exp[−vn1+n2 (φ)]| ≤ exp
[
D − λ

1/2
n1+n2

|φ|2 + A1λn1+n2 (Imφ)4
]
. (90)
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We have checked all of the G-K conditions. Since ρn1+n2−1 is sufficiently small by
(86), we know∣∣∣µn1+n2 − L2

(
µn1+n2−1 + 90ρn1+n2−1

(1 − L−2)(1 − L−4)
− 45ρn1+n2−1

1 − L−4

) ∣∣∣
≤ 16n−15/8

0 +
∣∣∣15L2ρn1+n2−1

1 − L−2

∣∣∣ ≤ K · n−15/8
0 . (91)

As in the proof Lemmas 1.2 and 1.3, we can take for Jn1+n2 a suitable connected
component. So, we can adapt Theorem 1.4. Theorem 1.1 is now proved.
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